日韩精品999,三妻四妾完整版在线观看电视剧,51国产成人精品午夜福中文下载,亚洲综合影院

歡迎光臨上海蔚雨科技有限公司網(wǎng)站!
銷售咨詢熱線:
18817590876

產(chǎn)品目錄

Product Category
您的位置: 網(wǎng)站首頁 > 技術(shù)文章 > 利用環(huán)境eDNA檢測河流系統(tǒng)中的淡水蚌類

利用環(huán)境eDNA檢測河流系統(tǒng)中的淡水蚌類

發(fā)布日期: 2022-09-14
瀏覽人氣: 3168

 

Detection of freshwater mussels (Unionidae) using environmental DNA in riverine systems


Abstract


Environmental DNA (eDNA) methods are being developed for use in conservation biology to improve upon conventional species survey techniques. Validation of eDNA methods in different environmental contexts is required if they are to be widely adopted. One potential application of eDNA methods is for the detection of freshwater mussels (Bivalvia: Unionidae), which are among the most imperiled species in North America. Conventional unionid survey methods are highly invasive and can be difficult to conduct due to issues with morphological identification and their cryptic use of habitat. eDNA methods can potentially provide a non-invasive, extremely specific, and highly sensitive alternative. Here, we examine the effectiveness of eDNA methods at detecting an imperiled unionid, the wavy-rayed lampmussel (Lampsilis fasciola), in lotic systems with moderate discharge. We developed a novel qPCR assay for the detection of L. fasciola eDNA, which included a custom internal positive control to check for PCR inhibition. We used different experimental densities of caged L. fasciola specimens as a point source of eDNA within two rivers of the Grand River watershed in Southern Ontario. Sampling occurred at set distances downstream of the cage using purpose-built sampling equipment. Detection was obtained at the cage (i.e., point of eDNA shedding) but not downstream at distances ≥10 m during stream discharges of approximately 1,632–2,332 L/s. The results indicate that eDNA is diluted rapidly in rivers with moderate discharge and that high-resolution spatial sampling efforts may be necessary to obtain meaningful eDNA-based distribution data of unionids, and other sessile organisms, present at low density in lotic systems.

 

1 INTRODUCTION

North America has the highest level of freshwater mussel (Unionidae) diversity in the world, with 297 native species (Williams, Warren, Cummings, Harris, & Neves, 1993). In addition to having high species diversity, unionids have one of the highest rates of imperilment for organisms in North America, with an estimated 29 species falling to extinction in the last century (Haag & Williams, 2014). Canada is home to 55 species of unionids, 41 of which are found in Ontario (Galbraith, Zanatta, & Wilson, 2015). Of these, 15 are imperiled to some degree. The severe decline of unionid populations is concerning as they contribute to a myriad of ecological processes. Unionids influence bottom-up trophic effects, increase nutrient flux within ecosystems, stabilize substrate, and improve water quality (Allen et al., 2012; Haag & Williams, 2014; Howard & Cuffey, 2006). This general decline may be due to a variety of factors. Anthropogenic effects impact unionids in several ways, including but not limited to: wastewater effluents, siltation, stream impoundment, chemical pollution, agricultural runoff, and the introduction of invasive bivalves (Bogan, 1993; Bringolf et al., 2007; Gillis et al., 2017; Prosser, Rochfort, Mcinnis, Exall, & Gillis, 2017). In particular, the introduction of the highly invasive zebra mussel (Dreissena polymorpha, Pallas 1771) to North America has had significant detrimental effects on unionid populations through fouling and disruption of mussel beds (Bossenbroek et al., 2018; Haag, Berg, Garton, & Farris, 1993).

Another contributing factor impacting the imperilment of unionids is the sensitivity of early life stages to environmental stressors (Galbraith et al., 2015). Unionids release their young as glochidia, which parasitize the gills of fish or amphibians in order to develop into juvenile mussels. Consequently, this relationship makes unionids indirectly sensitive to negative effects on host organisms, which are thought to contribute to lower rates of glochidia recruitment, and in turn higher mortality during early life stages (Bringolf et al., 2007).

Surveys must be conducted to better understand how unionid populations are currently distributed; however, they can be difficult to conduct and require significant expertise (Currier et al., 2018; Mackie, Morris, & Ming, 2008). Unionids are difficult to find in aquatic habitats due to the way they burrow into the benthic substrate, leaving only a portion of their exterior visible. This is further complicated by factors such as water depth and turbidity, often causing visibility of the benthic zone to be non-existent (Mackie et al., 2008; Sansom & Sassoubre, 2017). Traditional surveys attempt to quantitatively identify mussels via random quadrat sampling (RQS), a technique that involves surveying 1 m2 sections of substrate and counting the number and abundance of species (Mackie et al., 2008). RQS is not completely effective as it can overlook species present at low density, cause harassment to organisms, and can be very costly to conduct over large, or difficult to survey, areas (Sansom & Sassoubre, 2017). Qualitative surveys, such as timed searches, can be easier to conduct than RQS but have inherent disadvantages for finding cryptic species (Obermeyer, 1998). Alternative survey methods such as adaptive cluster sampling have been proposed for detecting unionids at low density; however, this method can become inefficient when a large search area is required and sample size increases (Smith, Villella, & Lemarié, 2003). Novel survey methods are needed to fully assess unionid populations as current methods are limiting in respect to species occurrence, density estimates, and upon the number of qualified personnel that can conduct them.

Environmental DNA (eDNA) analysis is a rapidly developing environmental survey technique which has the potential to improve many aspects of aquatic species sampling (Goldberg, Strickler, & Pilliod, 2015). eDNA methods have been proven in multiple contexts to be more sensitive, less costly, and less disturbing to the environment than conventional species detection techniques (Goldberg, Strickler, & Fremier, 2018; Hunter et al., 2018; Pilliod, Goldberg, Arkle, Waits, & Richardson, 2013; Simmons, Tucker, Chadderton, Jerde, & Mahon, 2016; Wilcox et al., 2013). However, there are a number of environmental and methodological variables which may injuriously affect the results of any eDNA study if not properly accounted for (Barnes et al., 2014; Jane et al., 2015; Wilcox et al., 2016). One variable of major concern is the presence of PCR inhibitors that prevent DNA amplification and mask eDNA presence (both in qPCR and next-generation sequencing), leading to false-negative results (McKee, Spear, & Pierson, 2015; Wilcox et al., 2018). Another example is the effect of water flow on eDNA detection probability (Deiner & Altermatt, 2014; Jane et al., 2015; Wilcox et al., 2016). Our understanding of how to navigate environmental variables to avoid confounding influences, and to maximize eDNA detection probability, should eventually culminate in a set of eDNA standards for different types of biological systems, pushing eDNA methods toward the forefront of conservation science.

There exists a potential for eDNA methods to be implemented for unionid surveys in conjunction with recovery efforts for imperiled species (e.g., relocation or reintroduction; Fisheries and Oceans Canada, 2018). One such imperiled species is the wavy-rayed lampmussel (Lampsilis fasciola, Rafinesque 1820) classified as “special concern" in 2010 (Fisheries and Oceans Canada, 2018). L. fasciola populations in Canada are limited to four river systems and one delta in southern Ontario. The purpose of this study was to examine eDNA detection rate at set sampling distances, under measured stream discharge, downstream of caged L. fasciola specimens placed in virgin territory, while also controlling for PCR inhibition during analysis. Our results will inform improvements to future eDNA surveys.

請聯(lián)系上海蔚雨科技獲取詳細信息

分享到:
日韩精品999,三妻四妾完整版在线观看电视剧,51国产成人精品午夜福中文下载,亚洲综合影院
中文字幕在线免费不卡| 国产成人免费av在线| 国产区在线观看成人精品| 久久久亚洲综合| 高清国产午夜精品久久久久久| 亚洲婷婷综合久久一本伊一区| 成人av在线电影| 91精品国产欧美一区二区| www.欧美日韩| 免费不卡在线视频| 老司机免费视频一区二区| 精品日本一线二线三线不卡| 久久九九久精品国产免费直播| 欧美在线观看视频在线| 欧美日韩在线播放一区| 成人app网站| 欧美日韩成人激情| 亚洲一区二区三区中文字幕在线| 精品影视av免费| 亚洲欧美经典视频| 国产精品夜夜爽| 精品在线亚洲视频| 国产精品毛片高清在线完整版| 国产午夜精品一区二区三区视频| 欧美精品一区二区三区高清aⅴ| 亚洲一区二区三区四区在线免费观看| 全国精品久久少妇| 17c精品麻豆一区二区免费| www.性欧美| 国产成人无遮挡在线视频| 国产精品中文字幕欧美| 免费人成在线不卡| 日韩片之四级片| 韩国一区二区在线观看| 成人晚上爱看视频| 亚洲激情第一区| 色综合久久六月婷婷中文字幕| 国产视频一区二区三区在线观看| 国产亚洲制服色| 色婷婷综合视频在线观看| 韩国精品主播一区二区在线观看| 亚洲国产精品人人做人人爽| 亚洲欧美日韩小说| 久久嫩草精品久久久久| 成人av小说网| 成人av中文字幕| 亚洲一二三四区不卡| 亚洲视频网在线直播| 欧美电影免费观看高清完整版| 亚洲精品福利视频网站| 不卡区在线中文字幕| 日韩精品一区二区三区老鸭窝| 精品久久久久久综合日本欧美| 蜜桃91丨九色丨蝌蚪91桃色| 欧美精选在线播放| 欧美一二区视频| 亚洲一区在线观看免费| 欧美日韩精品一区二区三区| 99免费精品在线观看| 欧美一区二区三区视频在线| 成人h动漫精品一区二| 亚洲一区二区在线免费看| 99国产一区二区三精品乱码| 国产在线精品不卡| 91在线无精精品入口| 国产精品久久久爽爽爽麻豆色哟哟| 狠狠v欧美v日韩v亚洲ⅴ| 8v天堂国产在线一区二区| 精品国产一区二区在线观看| 欧美精品免费视频| 国产精品中文字幕欧美| 亚洲精品欧美二区三区中文字幕| 91在线观看免费视频| 日韩一区二区三区四区| 正在播放一区二区| 色综合久久六月婷婷中文字幕| 国产一区二区三区在线看麻豆| 免费一级片91| 国产精品一区二区男女羞羞无遮挡| 亚洲图片另类小说| 日本不卡一区二区| 日韩欧美在线一区二区三区| 91精品国产综合久久精品图片| 日韩精品一二三| 91丨porny丨户外露出| 精品视频一区 二区 三区| 最新成人av在线| 欧美videossexotv100| 精品91自产拍在线观看一区| 91精品国产日韩91久久久久久| 图片区小说区国产精品视频| 成人激情免费电影网址| 欧美成人乱码一区二区三区| 97久久人人超碰| 精品久久久久一区二区国产| 国产精品一区免费视频| 亚洲激情六月丁香| 午夜视频在线观看一区| 久久精品av麻豆的观看方式| 国产精品欧美久久久久一区二区| 2023国产一二三区日本精品2022| 日韩欧美国产成人一区二区| 岛国精品一区二区| 91.com视频| 99精品国产99久久久久久白柏| 国产网站一区二区| 亚洲免费av高清| 91免费版在线| 亚洲精品中文在线观看| 国产福利一区二区三区在线视频| 日韩**一区毛片| 亚洲成人黄色影院| 欧美国产一区视频在线观看| 中文字幕亚洲欧美在线不卡| 91精品婷婷国产综合久久性色| 欧美成人三级电影在线| 国产精品久久三区| 精品一区二区三区久久| 国产综合色在线| 国产精品久久久久久久久免费桃花| 国产喂奶挤奶一区二区三区| 天天免费综合色| 一本到不卡精品视频在线观看| 亚洲少妇中出一区| 成人激情小说网站| 日韩成人dvd| 国产毛片精品视频| 国产一区二区久久| 国产色产综合产在线视频| 国产精品蜜臀在线观看| 精品视频色一区| 国产精品一品二品| 久久精品av麻豆的观看方式| 亚洲精品视频在线观看免费| 亚洲乱码国产乱码精品精的特点| 日韩美女一区二区三区| 亚洲国产欧美另类丝袜| 在线播放欧美女士性生活| 日韩欧美精品三级| 丝袜亚洲另类丝袜在线| 91.xcao| 99久久久久免费精品国产| 一区二区高清在线| 日韩一级片在线观看| 亚洲图片欧美激情| 亚洲欧美一区二区视频| 国内精品写真在线观看| 丝袜美腿一区二区三区| 另类人妖一区二区av| 最新国产成人在线观看| 午夜精品久久久久久久99樱桃| 欧美色图一区二区三区| 免费欧美在线视频| 午夜成人在线视频| 美国三级日本三级久久99| 国产精品麻豆99久久久久久| 久久色视频免费观看| 天天爽夜夜爽夜夜爽精品视频| 日韩一级片在线观看| 1区2区3区国产精品| 亚洲午夜精品一区二区三区他趣| 亚洲第一成人在线| 欧美一区二区网站| 国产日韩精品视频一区| 欧美极品另类videosde| 欧美日韩一区二区不卡| 国产人成一区二区三区影院| 欧美日韩精品一区二区三区四区| 亚洲激情五月婷婷| bt7086福利一区国产| 国产精品久久久久久福利一牛影视| 国产91在线|亚洲| 国产日韩欧美电影| 精品嫩草影院久久| 成人avav影音| 欧美大片在线观看| 69精品人人人人| 自拍偷在线精品自拍偷无码专区| 国产精品自拍毛片| 日韩欧美国产三级电影视频| 蜜臀国产一区二区三区在线播放| 久久久91精品国产一区二区三区| 色成人在线视频| 欧美乱妇一区二区三区不卡视频| 91官网在线观看| 91精品久久久久久久99蜜桃| 亚洲人成精品久久久久久| 91精品国产91久久综合桃花| 国产一区二区精品久久91| 97久久精品人人做人人爽| 成人国产精品免费网站| 欧美成va人片在线观看| 久久精品欧美日韩| 久久蜜桃av一区二区天堂| 久久久99久久精品欧美| 欧美国产乱子伦| 欧美主播一区二区三区| 日本亚洲免费观看| 日韩一级片在线观看| 日本美女一区二区|